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Fig. 6 Signal strength reduction as a function of percentage of ISS
Ku-band antenna aperture blockage.

the signal strength decreases as the structure penetraties the antenna
aperture projected cylinder. The gain reduction is mainly due to de-
creasing aperture area or effective antenna size and can be estimated
based on the aperture blockage area, as shown in Fig. 6, derived from
averaging the solar panel and radiator blockage results. Another
factor causing gain reduction is the shift of the antenna main beam
pattern (sum and difference patterns). However, it is not significant
enough to impact the ISS antenna autotracking performance.

As shown in Figs. 2 and 3, the flight data reach a floor value
of about −57 dBm. The simulation results actually decrease even
further, depending on the size of the remaining unblocked aperture
area. The signal strength increases after structure blockage of the
antenna aperture projected cylinder ceases. The computed results,
in general, predict a deeper null caused by the solar panel blockage.
This is expected because the solar panel was modeled as a perfect
conducting plate in the simulations. The actual solar array panel is a
composite structure formed by closely spaced solar cells. The flight
data indicate that the Ku band can withstand 4.6-dB degradation
and still maintain the data flow. The GTD simulations indicate that
a 4.6-dB degradation corresponds to about 40% aperture blockage.
The ISS Ku-band communication link will be considered lost if
more than 40% of the aperture projected cylinder is blocked by ISS
structures.

Conclusions
The ISS Ku-band antenna model for communication coverage

analysis1 is updated and validated using recently obtained flight
data. The flight data indicate the ISS Ku-band link can sustain 4.6-dB
degradation from structure blockage. The updated antenna model
for the ISS Ku-band reflector antenna, based on the flight data and
GTD simulations, allows up to 40% structure blockage of the an-
tenna aperture before declaring Ku-band communication outages.
The communication coverage based on the updated antenna model
reflects the actual Ku-band link margin and antenna performance.
A better match in the communication coverage is achieved between
computer simulations and actual measurements.
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Nomenclature
A = tether cross-sectional area, m2

a = semimajor axis of orbit, m
e = orbit eccentricity
F = factor of safety for tether material, 1.5
f = orbit true anomaly of the tether system center of mass, rad
g = gravitational acceleration at Earth sea level, 9.81 m/s2

Isp = specific impulse of chemical propellant, s
L = tether reference length, m
l = tether length, m
m = total system mass, m1 + m2 + mt , kg
mt = deployed tether mass, ρ Al, kg
m1 = mass of main spacecraft, kg
m2 = mass of payload, kg
m∗ = reduced system mass, kg
R = orbit radius to the system center of mass, m
Rp = periapsis radius of approach hyperbolic orbit, m
T = tether control tension, N
u = nondimensional control tension, T/[m1 ḟ 2 L(m2 + mt )/m]
v∞ = hyperbolic approach velocity, m/s
θ = in-plane tether libration angle, rad
� = nondimensional tether length, l/L
µ = gravitational constant of central planet, km3/s2

ρ = tether mass density, kg/m3

σut = ultimate tensile strength of tether material, N/m2

Superscripts

· = differentiation with respect to time, d( )/dt
′ = differentiation with respect to orbit true anomaly, d( )/d f

Introduction

T ETHERED spacecraft have been proposed for a wide variety of
advanced space applications, both in the vicinity of the Earth

and in interplanetary missions.1 A new application of tethers in
interplanetary spaceflight, first mentioned by Longuski et al.,2 has
been further investigated by Williams et al.3,4 In this application,
called tethered planetary capture, a tethered payload is deployed
from a mother spacecraft while the system is on a hyperbolic flyby
trajectory of a target planet. The basic maneuver is depicted in Fig. 1,
which shows the following: 1) The payload is deployed via a tether in
a hyperbolic approach orbit and made to spin or swing in the positive
direction indicted in Fig. 1. 2) The payload is released from the tether
at an appropriate moment so that it is captured into an elliptical orbit.
3) The main spacecraft gains an additional boost and is sent on a
new escape trajectory. By suitable selection of system parameters,
such as tether length and spin rate, it is possible to achieve planetary
capture without expending any chemical propellant.

The dynamics of the tethered planetary capture maneuver, as well
as preliminary control schemes were presented by Williams et al.3,4
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Fig. 1 Tethered planetary capture concept.

Fig. 2 Simplified tether system model.

Significant mass savings are possible at each of the major planets
in the solar system by employing tethers to perform the planetary
capture maneuver compared to a conventional propellant rocket sys-
tem. It has also been shown that it is possible to use the Coriolis
forces generated by tether reeling to guide the system from an in-
feasible capture scenario to one where planetary capture can take
place. By infeasible, it is meant that at no point during the flyby can
the payload be released into an elliptical orbit. A control discretiza-
tion method combined with simulated annealing was employed in
Ref. 4, where the required reel rates for the tether deployer were
found to be quite large, that is, 100–150 m/s. The focus of Refs. 3
and 4 is on optimal tether mass configurations, where the tether sys-
tem is required to spin quite rapidly as it commences the hyperbolic
flyby, rather than on the use of tether reeling. In this Note, optimal
control methodology is used to obtain planetary capture trajectories
at Venus and Jupiter. In these scenarios, the tether is initially non-
spinning and tether reeling is used to control the length and rotation
of the tether. A Chebyshev pseudospectral method is used to con-
vert the continuous optimal control problem to a discrete nonlinear
programming problem. This approach allows additional parame-
ters such as the tether mass to be determined in a straightforward
manner.

Equations of Motion
The tether system model is shown in Fig. 2. The mother spacecraft

m1 and the payload m2 are modeled as point masses, whereas the
tether is modeled as a uniform inextensible rod of variable length
with mass density ρ and cross-sectional area A. The applied control
force is assumed to be the nondimensional tether tension at the
mother spacecraft u. The Lagrangian for the system is given by4

L= 1

2

[
m1(m2 + mt )

m

]
l̇2 + 1

2 m∗l2(θ̇ + ḟ )2 + 1
2 m(Ṙ2 + R2 ḟ 2)

+ µm

R
− µm∗l1(1 − 3 cos2 θ)

(2R3)
(1)

where m∗ = (m1 + mt/2)(m2 + mt/2)/m − mt/6 is the reduced
mass of the system. The equations of motion for the system center of
mass, derived via Lagrange’s equations based on Eq. (1), are coupled
with the tether libration dynamics. However, numerical simulations
show that the orbital perturbations are relatively weak for the hy-
perbolic orbits considered in this Note and are ignored. Hence, the
coordinates R and f may be determined from astrodynamics as

R = a(1 − e2)

(1 + e cos f )
(2)

ḟ = (1 + e cos f )2

√
µ

(a[1 − e2])3
(3)

Note that it is assumed that the tether system is within the target
planet’s sphere of influence, and perturbations from the sun and
other planets are ignored. Under the aforementioned assumptions,
the nondimensional equations of motion for the tether system
are4

θ ′′ = 2(θ ′ + 1)

[
e sin f

1 + e cos f
− m1(m2 + mt/2)

mm∗
�′

�

]

− 3

1 + e cos f
sin θ cos θ (4)

�′′ = 2e sin f

1 + e cos f
�′ − (2m1 − m)mt/2

m1(m2 + mt )

�′2

�
+

(
m2 + mt/2

m2 + mt

)
�

×
[
(θ ′ + 1)2 + 1

1 + e cos f
(3 cos2 θ − 1)

]
− u (5)

Note that Eq. (5) models the change in tether length due to tension
control, but does not model the inertia or friction of the reel system.

When the end masses are released from the tether, the orbit of
each mass is determined by its instantaneous position and veloc-
ity vectors. For example, the eccentricity is the magnitude of the
eccentricity vector, which can be calculated with the equation

e = (1/µ)
(
V 2

x − µ/Rx

)
Rx − (1/µ)(Rx · Vx )Vx (6)

where

Rx =
{

R cos f + x cos( f + θ)

R sin f + x sin( f + θ)

}
(7)

Vx =
{

Ṙ cos f − R ḟ sin f + ẋ cos( f + θ) − x( ḟ + θ̇ ) sin( f + θ)

Ṙ sin f + R ḟ cos f + ẋ sin( f + θ) + x( ḟ + θ̇ ) cos( f + θ)

}

(8)

where x = −(m2 + mt/2)l/m for the main spacecraft and
x = (m1 + mt/2)l/m for the payload.

The required propellant mass mprop to transfer the payload from
the incoming hyperbolic orbit to a parabolic orbit may be calculated
from2

�v =
√

2µ/rp + v2∞ −
√

2µ/rp

mprop = m2[exp(�v/Ispg) − 1] (9)

Optimal Control Problem
The objective of the planetary capture maneuver is to deploy a

payload on a tether such that at some point during the hyperbolic
flyby it can be released into a captured orbit (e < 1). It is also desir-
able from a practical point of view to minimize the amount of work
done by the reel mechanism to reduce system power requirements.
Furthermore, to provide an advantage over the use of chemical pro-
pellant, it is desirable to keep the mass of tether as low as possible.
The work done by the reel mechanism is given by

W = T l̇ = [m1(m2 + mt )/m]u ḟ 2 L(�′L ḟ ) (10)
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The cost function selected for this problem is a linear combination
of the reel work squared and tether mass:

J = 1

2

∫ t f

t0

[
w1W 2 + w2mt

]
d f (11)

where w1 and w2 are weighting coefficients. The square of the work
done by the reel can be expected to be larger than the tether mass,
and, hence, the weights are selected as w1 = 0.01 and w2 = 0.1.
Other choices for the weights are possible, depending on the desired
penalties on the respective quantities. Note that the tether mass in
Eq. (11) is a function of the instantaneous tether length during the
maneuver. The control problem is to find the nondimensional control
tension u( f ) tether cross-sectional area A and the final time t f that
minimizes Eq. (11) subject to the constraints

e2(t f ) ≤ 0.995 (12)

u( f ) ≥ 0.001 (13)

T ( f ) ≤ σut A/F (14)

together with the state equations (4) and (5), and the initial conditions

{θ, θ ′, �, �′}|t0 = {θ0, θ
′
0, �0, �

′
0} (15)

The constraint given by Eq. (12) ensures that the payload at the
release point t f enters into a captured orbit. The final maximum
allowable eccentricity, e2 = 0.995 is selected to be sufficiently less
than that required for a parabolic orbit, so that timing errors of
several minutes for payload release are permissible. It is also chosen
to be consistent with earlier work.4 The constraint given by Eq. (13)
ensures that the tether remains in tension, and the constraint given
by Eq. (14) ensures that the design tension exceeds or is equal to the
instantaneous tension during the maneuver. Note that the tension is
not constant along a massive tether,5 and the control tension is used
as an approximation to the design tension in Eq. (14).

Several methods are available for the solution of optimal control
problems, such as shooting,6 gradient,6 and continuation methods.7

These methods are based on derivation of the necessary conditions
for optimality by the use of the calculus of variations and are com-
monly referred to as indirect methods.8 Indirect methods are often
extremely difficult to solve unless good guesses for the states and
adjoints are available. Alternatively, direct methods convert the orig-
inal problem into a parameter optimization problem by a suitable
discretization scheme.9 Several methods have been proposed that
differ in the way the state equations are approximated. Pseudospec-
tral methods10,11 have emerged as an efficient and reliable direct
approach that are relatively simple to implement. A pseudospectral
method is used in this Note because of its reliability12 and because
it requires a smaller number of optimization variables compared to
other popular direct methods for similar accuracy.11

In this Note, the Chebyshev pseudospectral method is em-
ployed (see Ref. 11). The Chebyshev method was selected over
the Legendre method (see Ref. 10) because the Chebyshev–Gauss–
Lobatto (CGL) nodes are available in closed form. In this method,
the state and control vectors are expanded with N th degree global
Lagrange interpolating polynomials based on the CGL points

xN (τ ) =
N∑

j = 0

x̂ jφ j (τ ), uN (τ ) =
N∑

j = 0

û jφ j (τ ) (16)

where x̂ j , û j , j = 0, . . . , N , are the coefficients of the interpolat-
ing polynomial. The coefficients are given by x̂ j = xN (τ j ), and
û j = uN (τ j ), where τ j = − cos(π j/N ), j = 0, . . . , N , are the CGL
points and φ j (τ ) are the Lagrange interpolating polynomials. The
CGL points lie in the domain τ ∈ [−1, 1] and must be mapped to
the physical domain, f ∈ [t0, t f ] by the linear transformation f =
{(t f − t0)τ + t0 + t f }/2.

Approximations to the state dynamics are obtained by direct
differentiation of the approximating polynomial for the states in
Eq. (16) and setting them to be equal to the state equations at the
CGL points. Derivatives of the state vector at the CGL points may
be related to the state vector at the CGL points by way of a differ-
entiation matrix

x′
N ( fk) = 2

t f − t0
x′

N (τk) = 2

t f − t0

N∑
j = 0

x̂ jφ
′
j (τk) = 2

t f − t0

N∑
j = 0

Dk j x̂ j

(17)

where the coefficients Dk j are entries of a (N + 1) × (N + 1) dif-
ferentiation matrix D

D := [Dk j ]

=




(ck)/c j

[
(−1) j + k

/
(τk − τ j )

]
, j �= k

−τk

/[
2
(
1 − τ 2

k

)]
, 1 ≤ j = k ≤ N − 1

−(2N 2 + 1)/6, j = k = 0

(2N 2 + 1)/6, j = k = N (18)

with c j = 1 for 1 ≤ j ≤ N − 1 and c j = 2 for j = 0 and N . The inte-
gral cost function is approximated by the Clenshaw–Curtis quadra-
ture rule

∫ t f

t0

p( f ) d f = t f − t0

2

∫ 1

−1

p(τ ) dτ ∼= t f − t0

2

N∑
j = 0

p(τ j )w j

(19)
where N is even

w j =




1/(N 2 − 1), j = 0, N

4

N

N/2∑
k = 0

1

c̄k

cos(2π jk/N )

1 − 4k2
, j = 1, . . . , N − 1 (20)

with c̄0 = c̄N/2 = 2 and c̄k = 1 for 1 ≤ k ≤ N/2 − 1. Like other direct
methods, pseudospectral methods can be sensitive to the initial guess
and the nonlinear programming (NLP) solver used. Yan et al.13

discuss these ideas in detail, and the method of generation of the
initial guess by integration of the equations of motion for a given
control set is used with NPSOL14 as the NLP solver. This has been
found to be quite satisfactory for the problem studied in this Note.

The original problem is converted into an NLP problem by en-
forcement of the state equations as equality constraints at the CGL
nodes and the use of the values of the states and controls at the CGL
nodes, the tether cross-sectional area, and the final time as optimiza-
tion parameters. Further details of the solution method are given in
Ref. 11. The resulting NLP problem is solved with NPSOL,14 which
is written in FORTRAN and called from MATLAB® via mex file
interfaces. The Jacobian of the constraints, as well as the gradient
of the performance index, are provided analytically, except for the
derivatives of the eccentricity constraint, which are approximated
by the use of finite differences due to their complexity.

Numerical Results
The optimal control problem is solved for a variety of cases by

the use of N = 50. This was selected based on convergence of the
cost function to within 1%. A set of common initial conditions is
used for all computations, {θ0, θ

′
0, �0, �

′
0} = {π, 0, 1, 0}. The initial

conditions represent that the payload is initially pointing toward
the central planet with the tether aligned along the local vertical,
nonspinning, and deployed at the reference length. This is intuitively
more practical than the requirement that the tether to be in an initially
spinning configuration. The initial true anomaly t0 is set as

t0 = π/6 − cos−1(1/e) (21)

which is selected to ensure that the tether system is within the tar-
get planet’s sphere of influence. The initial guess for the nonlinear
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solver is generated by integration of the tether system equations of
motion for a fixed length tether with the initial conditions given
earlier. Default tolerances are used in NPSOL, and, for validation
purposes, the solution is propagated with the interpolated controls
using MATLAB’s ode45 routine with absolute and relative error
tolerances set to 10−9.

Optimal trajectories are determined at Venus and Jupiter for a
range of values of the ratio of m1/m2. Nominally, m1 = 8000 kg,
which includes the tether mass.4 The parameters used for the inter-
planetary arrival conditions are taken from Ref. 4 and are repeated in

Table 1 Arrival conditions for the hyperbolic trajectory

Planet µ, km3/s2 v∞, km/s rp , km e �v, km/s L , km

Venus 3.25 × 105 2.71 6,550 1.148 0.362 150
Jupiter 1.27 × 108 5.64 72,300 1.018 0.268 190

a)

b)

c)

Fig. 3 Optimum results for controlled planetary capture: a) maximum
length rate, b) ratio of tether mass to propellant mass, and c) maximum
change in eccentricity from uncontrolled case.

a)

b)

c)

d)

Fig. 4 Optimum results for tethered planetary capture at Venus (m1/m2 = 10).

Table 1. The characteristics of the tether material are σut = 4 GPa,
ρ = 970 kg/m3, F = 1.5, whereas the propulsion system assumes
Isp = 300 s as in Refs. 2 and 4. A summary of the maximum length
rate, the ratio of tether mass to propellant mass, and the change in
eccentricity from the case where the tether length is held fixed is
given in Fig. 3. Example results of the optimal trajectory for the
case of m1/m2 = 10 are presented in Figs. 4 and 5.

Figure 3a shows that length rates of the order of 10–20 m/s are
needed to control the planetary capture maneuver successfully. As
the ratio of m1/m2 increases, both the maximum length rate and
required tether mass decrease. This is reasonable because, as the
payload mass decreases, the tether tension decreases; hence, less
material is required. The required tether mass varies between 43 and
55% of the corresponding propellant mass. In addition, as m1/m2

increases for a given tether length, the payload’s distance from the
center of mass increases, resulting in a larger �v at the tether tip for
the same angular velocity. Therefore, less intervention from tether
reeling is required. This is consistent with Fig. 3c, which shows
that the required change in eccentricity due to tether reeling de-
creases as m1/m2 increases. The results for the required tether mass
are even more impressive when it is considered that there is a fac-
tor of safety of 1.5 on the tether material and that the controlled
tether maneuver causes the payload to enter into a 0.995 eccentric-
ity elliptical orbit, whereas the propellant maneuver is based on a
hyperbolic to parabolic orbit transition. Note that it is advantageous
to make this ratio as large as possible to reduce both the tether mass
and maximum required length rate. The consequence of this, how-
ever, is that the boost in velocity of the main spacecraft is reduced
(not shown).

Example optimal trajectories are given in Figs. 4 and 5, which are
typical for different values of m1/m2. Figures 4a and 5a show that
intervention of the control system is implemented before periapsis.
This occurs because of the low tension in the tether during this stage
of the hyperbolic orbit (Figs. 4d and 5d) and, therefore, results in
less work being done by the reel system. At both Venus and Jupiter,
the tether is required to be reeled out only. The reason for reeling
the tether out is to increase the tether length and, hence, the �v
at the tether tip. In Ref. 4, maximum reel rates of approximately
150 m/s were reported for the Venus capture case (m1/m2 = 10),
where a cost function involving the maximum reel rate and penalty
functions for the constraints was used. It is evident from the re-
sults obtained in this Note that much more efficient maneuvers are
possible.



J. SPACECRAFT, VOL. 41, NO. 2: ENGINEERING NOTES 319

a)

b)

c)

d)

Fig. 5 Optimum results for tethered planetary capture at Jupiter (m1/m2 = 10).

Conclusions
A Chebyshev pseudospectral method has been used to obtain op-

timal trajectories for tethered planetary capture missions. Maximum
tether reel rates and tether mass are calculated for mass ratios be-
tween 5 and 15 of the main spacecraft mass to payload mass. Nu-
merical results show that it possible to transfer a payload from a
hyperbolic orbit to an elliptical orbit by the use of practical tether
reel rates (10–20 m/s) at both Venus and Jupiter. The tether mass
required to sustain the tension forces is between 43 and 55% of the
propellant mass needed to perform a similar maneuver using rocket
propulsion. It is apparent that tethers provide an efficient means for
performing controlled planetary capture maneuvers and may be an
important tool for future space exploration.
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